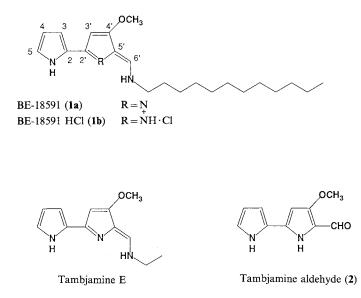
A NEW ANTITUMOR SUBSTANCE, BE-18591, PRODUCED BY A STREPTOMYCETE

II. STRUCTURE DETERMINATION

SHIGERU NAKAJIMA, KATSUHISA KOJIRI and HIROYUKI SUDA

New Drug Discovery Research Laboratories, Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Tsukuba Techno-Park Oho, Okubo 3, Tsukuba 300-33, Japan


(Received for publication June 17, 1993)

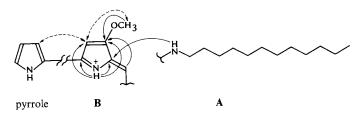
In the course of screening for new antitumor substances, BE-18591 (1a) was isolated from cultures of *Streptomyces* sp. BA18591¹⁾. The isolation and physico-chemical properties together with biological activities are reported in the preceding paper. In this paper, the structure elucidation is described.

The physico-chemical properties of **1a** were summarized in a previous paper¹⁾. The molecular formula of **1a** was determined as $C_{22}H_{35}N_3O$ from HRFAB-MS (calcd: m/z 358.2903, found: m/z358.2881 (M+H)⁺) and ¹³C NMR spectral data. BE-18591 was found to be basic in nature, its hydrochloride salt (**1b**) giving different ¹H NMR spectrum from that of the free base **1a**. Since a D₂O-exchangeable proton at δ_H 13.7 was newly

observed and other D₂O-exchangeable protons at $\delta_{\rm H}$ 9.48 and $\delta_{\rm H}$ 10.6 were clearly observed in the ¹H NMR spectrum of 1b, the hydrochloride salt 1b was used for further NMR studies. The ¹H and ¹³C NMR data for 1a and 1b are shown in Table 1. In decoupling experiments of 1b, irradiation of the D_2O -exchangeable proton at δ_H 10.6 caused the signals at $\delta_{\rm H}$ 6.27, 6.73 and 7.05 to collapse to sharp signals. Those signals were also found to be mutually coupled one another $(1.4 \sim 3.6 \text{ Hz})$. From these data and the coupling constant (3.6 Hz) between $\delta_{\rm H}$ 6.27 and 6.73, the presence of a 2-substituted pyrrole ring was suggested²⁾. A second partial structure (A in Fig. 2) was revealed by analysis of the ¹H-¹³C COSY spectrum, and the results from the decoupling experiments of 1b. The nature of the remaining unit C₆H₆NO depicted in partial structure B, was suggested from LSPD experiments and the HMBC spectrum of 1b (Fig. 2). The D₂Oexchangeable proton at $\delta_{\rm H}$ 13.7 was coupled to the carbons at $\delta_{\rm C}$ 90.9, 110.6, 142.0 and 163.4. The methoxyl proton at $\delta_{\rm H}$ 3.92 was coupled to the carbon at δ_c 163.4. The D₂O-exchangeable proton in the partial structure A at $\delta_{\rm H}$ 9.48 was coupled to the carbon at $\delta_{\rm C}$ 110.6. The olefinic proton at $\delta_{\rm H}$ 7.32 was coupled to the carbon at $\delta_{\rm C}$ 163.4. The ¹³C-¹H long range coupling data and ¹H-¹H COSY data of 1b show the connectivity of the partial structures A and B. The chemical shift of C-3' (δ_{C} 90.9) implies that the methine carbon was adjacent to the carbon bearing a methoxyl moiety. The

Fig. 1. Structures of BE-18591, tambjamine E and tambjamine aldehyde.

		BE-18591 ^a		BE-18591 HCl ^a		Tambjamine E ^b	
		¹ H NMR	¹³ C NMR	¹ H NMR	¹³ C NMR	¹ H NMR	¹³ C NMR
	NH	10.8 (1H, br s) ^c		10.6 (1H, br s)		9.92 (1H, br s)	
Pyrrole-1	2		122.3 (s)		122.5 (s)		123.7
	3	6.74 (1H, m)	113.2 (d)	6.73 (1H, ddd, 1.4, 2.6, 3.6)	112.9 (d)	7.07 (1H, brm)	111.2
	4	6.28 (1H, m)	110.6 (d)	6.27 (1H, ddd, 2.0, 2.6, 3.6)	110.5 (d)	6.28 (1H, br m)	113.0
	5	7.06 (1H, m)	124.1 (d)	7.05 (1H, dt, 1.4, 2.6)	123.9 (d)	6.76 (1H, br m)	123.8
	NH'			13.7 (1H, brs)			_
	2′		142.4 (s)		142.0 (s)		142.2
Pyrrole-2	3′	5.96 (1H, s)	91.9 (d)	5.94 (1H, d, 1.6)	90.9 (d)	5.97 (1H, s)	92.3
	4′	_	163.6 (s)		163.4 (s)		164.6
	5'		110.6 (s)		110.6 (s)	_	111.4
	OCH ₃	3.93 (3H, s)	58.4 (q)	3.92 (3H, s)	58.3 (q)	3.93 (3H, s)	59.1
	CH=	7.33 (1H, br d, 9.0)	140.0 (d)	7.32 (1H, d, 14.8)	140.0 (d)	7.36 (1H, br m)	142.8
	NH	9.50 (1H, brs)		9.48 (1H, br s)	_	9.50 (1H, brs)	_
		0.88 (3H, t, 7.0)	14.1 (q)	0.88 (3H, t, 7.0)	14.1 (q)		
		$1.20 \sim 1.45 (18H, m)$	22.7 (t)	1.19~1.45 (18H, m)	22.6 (t)		
Dodecyl moiety			26.5 (t)		26.5 (t)		
•	•		29.1 (t)		29.1 (t)		
			29.3 (t)		29.3 (t)		
			29.4 (t)		29.4 (t)		
			29.6 (t) \times 3		29.5 (t)		
			31.9 (t)		29.6 (t) \times 2		
		1.75 (2H, m)	30.2 (t)		31.8 (t)		
		3.47 (2H, br t, 7.0)	51.0 (t)	1.75 (2H, m),	30.2 (t)		
				3.47 (2H, dt, 6.3, 6.7)	50.9 (t)		


Table 1. ¹ H and ¹³ C NMR data for BE-18591 (1a), BE-18591 HCl (1b) and tambjamin	ne E in CDCl ₃ .
---	-----------------------------

^a ¹H NMR at 300 MHz and ¹³C NMR at 75 MHz.
^b Data in ref 5.
^c Multiplicity, J in Hz.

THE JOURNAL OF ANTIBIOTICS

Fig. 2. Partial structures A, B and pyrrole for 1b.

The solid-line arrows indicate ¹³C-¹H long range couplings and the dotted-line arrows indicate NOEs.

remaining connectivity of the 2-substituted pyrrole ring and partial structure **B** was confirmed from the difference NOE experiments of **1b**. When the 3'-H signal ($\delta_{\rm H}$ 5.94) was irradiated, NOEs were observed for the 3-H ($\delta_{\rm H}$ 6.73) and methoxyl ($\delta_{\rm H}$ 3.92) protons (Fig. 2). The double bond geometry of C-5' was determined to have the Z configuration because of the small ¹³C-¹H coupling constant (³J_{C-4'-6'-H}<2.8 Hz). Based on the above results, the structure of **1b** was determined as shown in Fig. 1.

The structure of the free base **1a** should be represented by an enamine structure shown in Fig. 1 from the results of the homonuclear decoupling experiments of **1a**. The signals at $\delta_{\rm H}$ 3.47 and $\delta_{\rm H}$ 7.33 were collapsed by irradiation of the D₂O-exchangeable proton at $\delta_{\rm H}$ 9.50.

After the structure determination of BE-18591 had been completed³⁾, we noticed that BE-18591 was a member of the Tambjamines group isolated from ascidians and nudibranchs as defensive metabolites against their predators (Fig. 1)^{4,5)}. UV and ¹H NMR data for the pyrrole rings of BE-18591 were essentially identical with those of the Tambjamines. However the ¹H and ¹³C NMR assignments for the pyrrole rings of Tambjamines required correction⁵⁾. The assignments were obtained unambiguously from difference NOE data described above, the coupling constants of protons on the pyrrole rings and the ¹H-¹³C COSY spectrum of **1b** (Table 1).

BE-18591 can be considered to be derived biogenetically from a precursor Tambjamine aldehyde $(2)^{6)}$. In fact, the aldehyde 2 was isolated under neutral conditions from the mycelium of the strain Streptomyces sp. BA18591. The physico-chemical data for **2** was as follows: FAB-MS; m/z 191 (M+H)⁺, UV λ_{max} ; 251 and 362, ¹H NMR; $\delta_{\rm H}$ 3.84 (3H, s, OCH₃), 6.12 (1H, m, 4-H), 6.27 (1H, s, 3'-H), 6.75 (1H, m, 3-H), 6.90 (1H, m, 5-H), 9.32 (1H, s, CHO), 11.2 (1H, br s, NH) and 11.4 (1H, br s, NH'), ¹³C NMR; $\delta_{\rm C}$ 57.8 (OCH₃), 90.9 (C-3'), 108.3 (C-3), 109.3 (C-4), 117.4 (C-5'), 120.4 (C-5), 123.4 (C-2), 133.2 (C-2'), 158.7 (C-4') and 171.7 (CHO).

References

- KOJIRI, K.; S. NAKAJIMA, H. SUZUKI, A. OKURA & H. SUDA: A new antitumor substance, BE-18591, produced by a streptomycete. I. Fermentation, isolation, physico-chemical and biological properties. J. Antibiotics 46: 1799~1803, 1993
- ABRAHAM, J. R. & H. J. BERNSTEIN: The proton resonance spectra of furan and pyrrole. Can. J. Chem. 37: 1056 ~ 1065, 1959
- KOJIRI, K.; H. SUZUKI, S. NAKAJIMA, A. OKURA, H. SUDA & M. OKANISHI (Banyu): Antitumor substance BE-18591. Jpn. Kokai 210676 ('92), July 31, 1992
- CARTE, B. & D. J. FAULKNER: Defensive metabolites from three nembrothid nudibranchs. J. Org. Chem. 48: 2314~2318, 1983
- 5) LINDQUIST, N. & W. FENICAL: New tambjamine class alkaloids from the marine ascidian *Atapozoa* sp. and its nudibranch predators. Origin of the tambjamines in *Atapozoa*. Experientia 47: 504~506, 1991
- MODY, S. R.; V. HEIDARYNEJAD, A. M. PATEL & P. J. DAVE: Isolation and characterization of Serratia marcescens mutants. Defective in prodigiosin biosynthesis. Curr. Microbiol. 20: 95~103, 1990